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Abstract. Several past episodes of rapid carbon cycle and climate change are hypothesised to be the result of the Earth system 

reaching a tipping point beyond which an abrupt transition to a new state occurs. At the Palaeocene-Eocene Thermal Maximum 10 

(PETM) ~56 Ma, and at subsequent hyperthermal events, hypothesised tipping points involve the abrupt transfer of carbon 

from surface reservoirs to the atmosphere. Theory suggests that tipping points in complex dynamical systems should be 

preceded by critical slowing down of their dynamics, including increasing temporal autocorrelation and variability. However, 

reliably detecting these indicators in palaeorecords is challenging, with issues of data quality, false positives, and parameter 

selection potentially affecting reliability. Here we show that in a sufficiently long, high-resolution palaeorecord there is 15 

consistent evidence of destabilisation of the carbon cycle in the ~1.5 My prior to the PETM, elevated carbon cycle and climate 

instability following both the PETM and Eocene Thermal Maximum 2 (ETM2), and differing carbon cycle dynamics preceding 

the PETM and ETM2. Our results indicate a loss of ‘resilience’ (weakened stabilising negative feedbacks and greater 

sensitivity to small shocks) in the carbon cycle before the PETM, and in the carbon-climate system following it. This pre-

PETM carbon cycle destabilisation may reflect gradual forcing by the contemporaneous North Atlantic Volcanic Province 20 

eruptions. Our results are consistent with but cannot prove the existence of a tipping point for abrupt carbon release, e.g. from 

methane hydrate or terrestrial organic carbon reservoirs, whereas we find no support for a tipping point in deep ocean 

temperature. 

1. Background 

The Palaeocene-Eocene Thermal Maximum (PETM) at ~56 Ma is considered a potential example of passing a tipping point 25 

in the carbon-climate system where a smooth change in forcing triggered a large response (Lenton, 2013). Palaeorecords across 

the PETM indicate that an abrupt release of isotopically-light carbon (between 2000 and 13000 Pg C, best estimate ~3000 Pg 

C) into the ocean-atmosphere system occurred in under ~5 ky, accompanied by global warming of ~5 oC, a 2.5 to 3.0 ‰ 

benthic δ13C excursion, and significant ocean acidification (Dickens, 2011; Dickens et al., 1995; Dunkley Jones et al., 2013; 

Frieling et al., 2017; Kirtland Turner et al., 2017; Littler et al., 2014; McInerney and Wing, 2011; Sluijs et al., 2007b; Zachos 30 
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et al., 2005, 2008, Zeebe et al., 2009, 2016). It has been hypothesised that gradual warming during the late Palaeocene (Figure 

1) eventually crossed a tipping point, either through an internal process or an external perturbation such as volcanism (Svensen 

et al., 2004), which triggered the extensive dissociation of a carbon cycle ‘capacitor’ such as methane hydrates in ocean 

sediments (Dickens, 2011; Dickens et al., 1995; Minshull et al., 2016), permafrost soil carbon (DeConto et al., 2012) or organic 

carbon from a source such as peat (Cui et al., 2011; Kurtz et al., 2003) that benthic δ13C records and modelling indicate 5 

accumulated earlier in the Palaeocene (Dickens, 2011; Komar et al., 2013; Kurtz et al., 2003). This in turn led to a rapid 

increase in atmospheric CO2 (pCO2) and the subsequent amplification of global warming and carbon release in a positive 

feedback loop that shifted the Earth System to a warmer state for ~100 kyr. An alternative hypothesis is that a very large 

external perturbation of volcanic carbon caused the PETM (Gutjahr et al., 2017) with little role for amplifying feedbacks within 

the carbon cycle and therefore no significant role for a tipping point. 10 

 

The PETM was followed by the Early Eocene Climatic Optimum (EECO; Figure 1) containing subsequent hyperthermal 

events such as Eocene Thermal Maximum 2 (ETM2) at ~54 Ma and ETM3 at ~53 Ma, which are potentially paced by orbital 

eccentricity forcing interacting with long-term warming and discharging methane hydrate deposits to produce threshold 

responses past repeated tipping points (Archer et al., 2009; Kirtland Turner et al., 2014; Komar et al., 2013; Littler et al., 2014; 15 

Lourens et al., 2005; Lunt et al., 2011; Stap et al., 2010; Westerhold et al., 2007; Westerhold and Rohl, 2009). However, the 

PETM occurred in a different orbital setting to the later events, suggesting that the PETM required an additional external 

“push” while the latter hyperthermals were eccentricity-paced tipping points (Littler et al., 2014). This push could have come 

from the emissions of the contemporaneous North Atlantic Volcanic Province (NAVP) eruptions both before and during the 

PETM (Frieling et al., 2016; Gutjahr et al., 2017; Storey et al., 2007; Svensen et al., 2004). Methane release from hydrate 20 

dissociation may also have been significantly limited or delayed by sediment transport processes, potentially limiting its role 

as a positive feedback (Minshull et al., 2016). 

 

Many complex systems have been found to include tipping points, beyond which they abruptly transition into a new 

equilibrium state (Dakos et al., 2015; Lenton, 2013; Scheffer et al., 2009). Theory suggests that, prior to reaching such a tipping 25 

point, a system will exhibit ‘critical slowing down’ of its dynamics – meaning a slowing recovery rate in response to 

perturbations – which can be detected as increasing trends in autocorrelation and variability in time-series data (Carpenter and 

Brock, 2006; Dakos et al., 2008, 2012; Kéfi et al., 2013; Lenton, 2011; Lenton et al., 2012a; Scheffer et al., 2009). Changes in 

skewness and kurtosis may also occur, and if internal variability is high, a system can ‘flicker’ between different states before 

undergoing a more permanent shift between them (Dakos et al., 2012, 2013; Scheffer et al., 2009; Wang et al., 2012). Previous 30 

work has suggested that these indicators, which can be used as ‘early warning signals’ (EWS) or more generally as resilience 

metrics, may be detectable prior to some abrupt climate transitions in the palaeorecord (Dakos et al., 2008; Lenton, 2011), 

including the Eocene-Oligocene Transition and during several Pleistocene climate shifts (Dakos et al., 2008; Lenton, 2011; 

Lenton et al., 2012b, 2012a). However, autocorrelation and variance can also increase prior to non-catastrophic transitions, 
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with or without bifurcations in phase space (Kéfi et al., 2013). Hence here increasing autocorrelation and variance is viewed 

more broadly as indicating declining resilience of a system (i.e. weakening negative feedbacks and greater sensitivity to small 

shocks), whether or not a critical transition is imminent. Other potential issues with detecting changing system resilience in 

palaeorecords include infrequent sampling rate, dating uncertainties, the possibility of producing false positives or negatives, 

and the extent to which these methods are dependent on subjective parameter choices (Boettiger et al., 2013; Boettiger and 5 

Hastings, 2012; Lenton, 2011) (see Methods for further discussion). 

 

Here we test the hypothesis that the PETM and ETM2 are examples of tipping points being reached in the carbon-climate 

system following long-term destabilisation (e.g. of a sensitive carbon cycle capacitor rich in isotopically-light carbon), by 

looking for declining resilience preceding them using published methodologies (Dakos et al., 2008, 2012, Lenton et al., 2012a, 10 

2012b). Whilst a signal of declining resilience cannot prove the existence of a tipping point, its absence would tend to falsify 

the tipping point hypothesis. Palaeorecords suffer from greater dating uncertainties and a less frequent sampling rate than is 

possible with modern climate data, making robust time-series analysis more challenging. Hence sufficiently long and high-

resolution palaeorecords available across the late Palaeocene and early Eocene were required in order to enable significant 

results to be obtained. To this end we use the ~7.7 Myr-long benthic δ18O and δ13C palaeorecords from ODP Site 1262 in the 15 

South Atlantic (Littler et al., 2014), and sub-divide the datasets into pre-PETM and post-PETM bins, as well as sub-dividing 

the post-PETM bin into pre-ETM2 and post-ETM2 bins, for separate analyses. These isotope records track the long-term global 

state of high latitude climate and the carbon cycle respectively (Zachos et al., 2001, 2008) and are therefore appropriate data 

choices for detecting the resilience of the global carbon-climate system, which in turn determines the long-term resilience of 

the whole Earth System as its key slow-timescale components. A major limitation of the available palaeorecords is that their 20 

resolution is of the order of ~3 kyr, which only allows us to monitor changes in the dynamics of the slowest parts of the carbon 

cycle and climate system (potentially including large carbon reservoirs in the ocean, methane hydrates, permafrost, or soil 

carbon, and the ocean thermohaline circulation). Any shorter-term drivers of instability closer to the event, for example changes 

in ocean and atmospheric dynamics or precursor warming on millennial timescales (Secord et al., 2010; Sluijs et al., 2007a), 

will be missed and thus could constitute ‘missed alarms’. As a result, in this study we focus only on the long-term trends in 25 

the global carbon-climate system prior to and across the PETM and ETM2. 

 

We use multiple indicators – including autoregressive coefficient at lag 1 (AR(1)) and detrended fluctuation analysis h-value 

(DFA-h; binned metrics only) (Lenton et al., 2012b; Livina and Lenton, 2007) to reveal slowing down, and standard deviation 

(SD) and non-parametric drift-diffusion-jump (DDJ) model function metrics (Dakos et al., 2012) to reveal increasing 30 

variability. An overall increasing trend in AR(1) or DFA-h would show the slow parts of the climate or carbon systems were 

recovering more slowly from regular perturbations, while increasing SD or variance as measured by the DDJ model would 

show each system was being perturbed further from their current state. Together they indicate a system being destabilised and 

becoming less resilient to being knocked into a new state. Skewness and kurtosis are also measured to provide further context 
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(see Supplementary Material) as both may change in the presence of more extreme values. Sensitivity analyses are conducted 

in order to ensure detected signals are robust across different methodologies and parameter choices (see Methods and 

Supplementary Material). 

2. Methods 

2.1. Rolling Window Metrics 5 

For the rolling window metrics we follow the methodology first outlined by (Dakos et al., 2008), and subsequently used by 

other studies including (Dakos et al., 2012; Lenton et al., 2012a, 2012b), and the ‘Early Warning Signals Toolbox’ developed 

based on this work (documented at www.early-warning-signals.org and available in as the ‘earlywarnings’ package in R (R 

Foundation for Statistical Computing, 2016)). After selecting the dataset and for the pre-PETM analysis terminating it just 

prior to the hypothesised transition to avoid biasing the analysis, the data are first interpolated (using linear interpolation by 10 

default with the ‘interp1’ function in Matlab (The MathWorks Inc., 2016)) to provide the equidistant data-points required for 

rigorous statistical analysis. However, interpolation itself can introduce statistical artefacts into the analysis as, by definition, 

the addition of interpolated data-points increases self-similarity and thus autocorrelation in the dataset. In palaeorecords this 

tends to result in an artificial increase in autocorrelation in parts of the dataset with either sparser data-points or complete gaps 

in the data. As a result we also analyse non-interpolated data in order to assess the sensitivity of our results to interpolation. 15 

Following this, the data are then detrended by subtracting the smoothed dataset, estimated with a Gaussian kernel smoothing 

function (using the ‘ksmooth’ function in R), in order to remove any long-term trends because these are not the focus of the 

analysis. This makes the dataset stationary. Bandwidth is an important consideration in this process and is adjusted heuristically 

for each dataset in order to best remove long-term trends but leaving short-term fluctuations. 

 20 

An autoregressive model of order 1 (AR(1)) is fitted to the data within a rolling window (using the ‘generic_ews’ function of 

the ‘earlywarnings’ package in R). The AR(1) model is of the form: 𝑥𝑡+1 = 𝛼1𝑥𝑡 + 𝜀𝑡, fitted by an ordinary least-squares 

method and with a Gaussian random error. Following previous studies the default window size is set at half the length of the 

dataset, but as part of our sensitivity testing we also repeat our analyses for window sizes of 25% and 75%. The choice of 

window length is a trade-off between dataset resolution and the reliability of the estimate of the indicator, with a short window 25 

allowing shorter-term changes in indicators to be tracked at the cost of lower estimate reliability and vice versa. On the same 

rolling window the skewness, kurtosis, and standard deviation of the dataset are also calculated (also using the ‘generic_ews’ 

function of the ‘earlywarnings’ toolbox in R).  

 

Finally, the likelihood of there being a real trend in the results is calculated by estimating the nonparametric Kendall rank-30 

correlation statistic (τ), which measures the strength of an indicator’s tendency to increase (>>0) or decrease (<<0) against the 

null hypothesis of randomness (~0) (also using the ‘generic_ews’ function of the ‘earlywarnings’ toolbox in R). However, this 
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statistic is most robust when the trend is consistent over a long period, while increasing but oscillating trends or trends only at 

the very end of the record can produce weak or even negative values despite a clearly visible trend (Dakos et al., 2012). We 

also calculate a p-value for each metric by bootstrapping our detrended datasets to generate 1000 surrogate records with 

equivalent mean and variance, re-calculating the metric and Kendall τ value for each, and finding the proportion of Kendall τ 

values equal or greater than that of the original palaeorecord (Dakos et al., 2008). 5 

2.2. Binned metrics 

As well as performing rolling window time-series analysis, we also measure AR(1), SD, skewness, and kurtosis on binned 

data to provide simple before/after comparisons of changes across the events. To this end the datasets (n=2302) were binned 

into pre-PETM (n=1331), post-PETM (n=921), PETM to ETM2 (n=593), and post-ETM2 (n=240) bins, excluding data-points 

from during each event so as to avoid biasing. Detrended fluctuation analysis (DFA) was also used as an alternative measure 10 

to AR(1) for short-term memory and critical slowing down in the dataset bins (performed using the ‘DFA’ function of the 

‘fractal’ package in R). DFA extracts the fluctuation function over a window 𝑠, and if the data is long-term power-law 

correlated, the fluctuation function 𝐹(𝑠) increases as a power law: 𝐹(𝑠) ∝ 𝑠ℎ , where ℎ is the DFA fluctuation exponent 

(Lenton et al., 2012b) and reaches value 1.5 at a critical transition (Livina and Lenton, 2007). A p-value is calculated for each 

metric using a permutation test (i.e. by reshuffling and repartitioning the before/after event data into the same sized bins 1000 15 

times and comparing the metrics’ resultant before/after differences with the observed metric before/after difference), except 

for AR(1) for which we instead use AR(1) model-derived surrogate data to compare against (i.e. by generating 1000 surrogate 

datasets with the same AR(1) value, mean, and variance as the before-event bin over the length of the after-event bin and 

compare this distribution to the observed after-event AR(1) value). 

2.3. Nonparametric Drift-Diffusion-Jump Model 20 

A model-based alternative to the time-series analysis methods (whether rolling window or metric-based) above is to fit a 

general nonparametric drift-diffusion-jump model to the dataset with as a surrogate for an unknown data-generating process 

(Carpenter and Brock, 2011; Cox and Ross, 1976; Dakos et al., 2012; Johannes, 2004). In this model functions are estimated 

for drift, diffusion, and jump processes using nonparametric regression, where drift measures the local rate of change, diffusion 

measures the standard deviation of the relatively small shocks that occur at each time step, and jumps are large intermittent 25 

shocks. The conditional variance of the data is also estimated from the nonparametric regression, and represents the variance 

of the data from its conditional expectation estimated using kernel regression. We use the ‘ddjnonparam_ews’ function in the 

‘earlywarnings’ package on R, using the default options of a bandwidth of 0.6 and 500 points for computing the kernel. We 

use raw data for this analysis, with no detrending or interpolation and without log transforming the data first. In interpreting 

the results we focus on the general long-term trends in the estimated terms as many of the shorter-term fluctuations potentially 30 

represent model over-fitting. 
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2.4. Limitations 

Despite positive results in some palaeoclimate EWS studies (Lenton, 2011), there are several potential issues with searching 

for resilience indicators in palaeorecords. Palaeorecords suffer from greater dating uncertainties and a less frequent sampling 

rate than is possible with modern climate data, making robust time-series analysis more challenging. Most indicators also do 

not reveal exact information about the nature of the transition itself, with increasing slowing down and variability detected 5 

prior to both catastrophic and non-catastrophic transitions featuring a bifurcation in phase space and even before non-

catastrophic transitions without a bifurcation (Kéfi et al., 2013). Concerns have also been raised over the likelihood of 

producing false positives (where EWS appear to indicate an impending transition which never occurs) or false negatives (i.e. 

a “missed alarm”, when EWS may be entirely absent prior to a known critical transition), and the extent to which these methods 

are dependent on subjective parameter choices (Boettiger et al., 2013; Lenton, 2011). There is a risk that selecting and analysing 10 

known or suspected critical transitions in the palaeoclimate record is particularly liable to false positives, as positive indicators 

at the transitions could potentially have occurred purely by chance rather than due to systemic instability (Boettiger and 

Hastings, 2012). However, it has been argued that EWS can be reliably detected if both increasing autocorrelation and variance 

are seen prior to the transition rather than one of these indicators alone (Ditlevsen and Johnsen, 2010). Detecting multiple, 

consistent, and robust signals from the indicators can be indicative of decreasing system resilience even if a catastrophic 15 

transition is not reached or is instead triggered by an external perturbation rather than internal processes (Dakos et al., 2015). 

3. Results and Discussion 

3.1. Rolling Window Metrics 

Rolling window metrics prior to the PETM reveal a sudden increase in AR(1) and SD after ~57.7 Ma in the benthic δ18O record 

associated with an excursion in the data, which suggests some degree of destabilisation of the slow climate system prior to the 20 

PETM (Figure 2 & Supporting Figure S1). However, the subsequent divergence of standard deviation after ~56.5 Ma does not 

support a tipping point involving deep ocean temperature at the PETM, which is also indicated by the non-significant 

bootstrapped p-values for the metrics of both interpolated and non-interpolated data. Alternatively, this could represent a 

‘missed alarm’ as the shorter-term climate dynamics that might be critical to the dynamics of the tipping point are not 

sufficiently resolved by the available data.  25 

 

The benthic δ13C record shows clearer evidence of declining resilience in the slow components of the carbon cycle, with long-

term increases in AR(1) and SD in the run-up to the PETM with steps at ~57.7 Ma and ~56.8 Ma which are consistent across 

the sensitivity analyses (skewness also increases, while kurtosis declines up to the PETM; Supporting Figure S1). Bootstrapped 

p-values indicate that the δ13C SD trend is significant (p=0.002) for the interpolated data while the δ13C AR(1) trend is 30 
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significant (p=0.022) for the non-interpolated data. This supports a long-term slowing down in benthic δ13C in the late 

Palaeocene, which may reflect a gradually-forced destabilisation of the global carbon cycle prior to the PETM. 

 

Rolling window analysis across the whole of the late Palaeocene / early Eocene (LPEE) interval suggest but cannot prove 

systemic changes in carbon cycle and climate (in)stability across both the PETM and ETM2 (Figure 3 & Supporting Figure 5 

S2). Between the PETM and ETM2 δ18O AR(1) increases up until ~200 kyr before ETM2 and SD experiences a small 

temporary increase followed by a larger decrease. In contrast, all metrics for δ13C experience a rapid jump during the PETM 

and then remain relatively stable until ETM2. Following ETM2, δ18O AR(1) increases significantly while SD increases 

slightly, whereas for δ13C both metrics (as well as skewness and kurtosis; Supporting Figure S2) consistently increase. 

However, the bootstrapped p-values indicate that none of these trends are significant for the interpolated data, but that the 10 

increase in AR(1) for both δ18O and δ13C are highly significant (p=0). This indicates that there is some evidence for slowing 

down in both the δ18O and δ13C data and therefore the long-term climate system and carbon cycle across the LPEE interval, 

but this is dependent on not interpolating the data prior to the analysis. It should also be recognised that the abrupt shifts in 

δ13C at the PETM and ETM2 are not fully removed by detrending prior to the analysis, hence they are at least partly responsible 

for the upward steps in the indicators at the events. 15 

3.2. Binned Metrics 

To address the issue of large excursions failing to be removed by detrending for the rolling window metrics, as well as the 

issue of data gaps caused by dissolution at the peak of each event (Littler et al., 2014), we calculate aggregate metrics (i.e. no 

rolling windows) on the binned data (excluding data from within the events) (Table 1). The binned metrics show significant 

increases in AR(1) across both the PETM and ETM2 for δ18O and δ13C, with DFA-h also significantly increasing across the 20 

PETM and ETM2 for δ18O and across ETM2 for δ13C. SD falls in the interval between the PETM and ETM2 and then increases 

across ETM2 for both datasets, but for the all data after the PETM the overall increase is only significant for δ13C. These 

results are consistent with the rolling window metrics, except for δ13C SD which in the rolling window metrics is higher 

between PETM and ETM2 than before the PETM and is likely to be the result of excluding the extreme data values during the 

PETM itself. These results indicate both the long-term climate system and carbon cycle slowed down to some extent after both 25 

the PETM and ETM2 (but became less variable following the PETM itself), providing support for the slow parts of global 

carbon-climate system being progressively destabilised through the LPEE interval by the hyperthermal events but not for any 

tipping points. 

3.3. Nonparametric Drift-Diffusion Jump Model 

Fitting a non-parametric drift-diffusion-jump model to the datasets provides independent model-based metrics to compare to 30 

the rolling window metrics, with terms for the conditional variance measuring variance from dataset’s conditional mean 

(estimated by kernel regression), diffusion measuring the standard deviation of regular small shocks at every time-step, and 
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jump intensity measuring either irregular large shocks or flickering (Carpenter and Brock, 2011; Dakos et al., 2012) (Figure 

4). For δ18O this model reveals an overall increase in conditional variance and diffusion and a reduction in jump intensity ~2 

My before the PETM, followed by a slight decrease in conditional variance after the PETM and intermittent spikes in jump 

intensity and conditional variance during and following ETM2. This suggests the climate shifted to a state with higher 

variability featuring regular small shocks ~2 My prior to the PETM, became slightly less variable following the PETM, but 5 

featured larger irregular shocks during and after ETM2. While this suggests some degree of climate instability in the ~2 My 

before the PETM and following ETM2, there is no evidence of a critical transition in the climate system at the PETM or ETM2 

themselves. In contrast, the δ13C model reveals decreasing diffusion and increasing conditional variance and jump intensity in 

the 1.5 My run-up to the PETM, indicating increasing total variability driven by large irregular shocks and consistent with a 

critical transition being approached in the carbon cycle at the PETM (Dakos et al., 2012). Conditional variance and jump 10 

intensity remain high and diffusion remains low for ~1 My after the PETM, before reversing ~300 kyr before ETM2 except 

for brief spikes in both diffusion and jump intensity during and after ETM2. This indicates that variability in the carbon cycle 

remained high and driven by large shocks for ~1 My after the PETM, but that variability mostly shifted towards smaller regular 

shocks prior to and after ETM2. The shift in variability before ETM2 slightly precedes the biotic turnover detected in both 

marine and terrestrial records in the ~200 kyr prior to ETM2, despite there being no obvious shift in the palaeorecords that 15 

may have driven this turnover (Westerhold et al., 2018). Overall these results are consistent with elevated carbon cycle 

instability following the PETM, but suggests that ETM2 was not preceded by the same dynamics as the PETM. 

4. Conclusion 

In summary, both rolling-window metrics before and across the PETM, binned metrics, and nonparametric drift-diffusion-

jump models suggest that there was a loss of resilience in the slow components of the carbon cycle before and following the 20 

PETM and ETM2. In contrast, while there is some evidence for destabilisation in the δ18O data prior to and after the PETM, 

there is no clear evidence of a critical transition in the climate system at this time. Minimal lag between δ18O and δ13C in the 

late Palaeocene indicates close coupling between climate and the carbon cycle prior to the PETM (Littler et al., 2014), and so 

the observed instability in the climate system is likely to have been induced by the contemporaneous destabilisation of the 

carbon cycle. Furthermore, ETM2 appears to be preceded by different dynamics to the PETM, which fits with the suggestion 25 

that the PETM required an extra “push” unlike the later eccentricity-paced hyperthermals which might represent more classical 

tipping points (Littler et al., 2014). These results are consistent with the hypothesis of a gradual destabilisation of the long-

term carbon cycle by increasing pCO2 concentrations in the ~1.5 My preceding the PETM (starting at ~57 Ma, intensifying 

after ~56 Ma), which coincides with the intensification of North Atlantic Volcanic Province (NAVP) eruptions and its 

associated volcanic and thermogenic CO2 and methane emissions, with subsequent emissions during the PETM potentially 30 

helping to prolong its duration (Frieling et al., 2016; Storey et al., 2007; Svensen et al., 2004). This time also coincides with a 

dramatic long-term decrease in organic carbon storage following a large build-up as indicated by the sharp downturn in benthic 
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δ13C from ~57 Ma (Figure 1), either as a result of large-scale methane hydrate or peat dissociation and oxidation (Dickens, 

2011; Komar et al., 2013; Kurtz et al., 2003). The hypothesis of a carbon cycle tipping point at the PETM survives our tests 

(although they cannot directly confirm it or rule out an external trigger). In contrast the hypothesis of a tipping point in deep 

ocean temperature (as recorded by the δ18O record considered) is not supported. A large external perturbation, e.g. a massive, 

abrupt injection of volcanic carbon from the NAVP (Gutjahr et al., 2017) or the recent suggestion of a meteorite strike (Schaller 5 

et al., 2016), could have played a role in triggering the PETM, but we find clear evidence that the carbon cycle had already 

been getting progressively more unstable and thus more vulnerable to being pushed beyond a tipping point, and remained so 

in its aftermath. 
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Figure 1: Palaeorecords of benthic δ18O (blue) and δ13C (green) across a) the Palaeocene and Eocene (data from global stack (Zachos 

et al., 2001, 2008)) and b) the Late Palaeocene-early Eocene (LPEE) study interval (data from ODP Site 1262 (Littler et al., 2014) 

with ages adjusted as per (Westerhold et al., 2015)). Significant climate and carbon cycle events are labelled, including the 

Cretaceous/Palaeogene boundary (K/Pg), Palaeocene-Eocene Thermal Maximum (PETM), Eocene Thermal Maximum 2 (ETM2), Early 

Eocene Climatic Optimum (EECO), the Mid-Eocene Climatic Optimum (MECO), and the Eocene-Oligocene Transition (EOT), while the 5 
black box marks the LPEE interval.  
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Figure 2: Rolling window resilience analysis of benthic δ18O (left) and δ13C (right) in the run-up to the PETM. The top panels illustrate 

the palaeorecord (black crosses) and the detrending applied to the data (red line), with the panels below illustrating the results of the analysis 

for AR(1) coefficient and standard deviation calculated in a 50% rolling window across each time-series for both interpolated (black line) 

and non-interpolated (blue line) data with the Kendall τ rank-correlation and boostrapped p-value for each. Results for skewness, kurtosis, 5 
and sensitivity analyses for all metrics can be found in the Supplementary Material.  
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Figure 3: Rolling window resilience analysis of benthic δ18O (left) and δ13C (right) across the PETM and ETM2. The top panels 

illustrate the palaeorecords (black crosses) and the smoothed record used to detrending the data (red line), with the panels below illustrating 

the results of the analysis for AR(1) coefficient and standard deviation calculated in a 50% rolling window across each time-series for both 

interpolated (black line) and non-interpolated (blue line) data with the Kendall τ rank-correlation and boostrapped p-value for each. The 5 
PETM and ETM2 are marked by the grey bars. Results for skewness, kurtosis, and sensitivity analyses for all metrics can be found in the 

Supplementary Material.  
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Figure 4: Non-parametric drift-diffusion-jump model functions of benthic δ18O (left) and δ13C (right) across the PETM and ETM2. 
The top panels illustrate the palaeorecords (black crosses), with the panels below illustrating the model functions for conditional variance 

(blue line), diffusion (green line), and jump intensity (red line) for each palaeorecord (drift is not plotted). The PETM and ETM2 are marked 

by the grey bars (left-most and right-most respectively).  5 
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Tables 

Table 1: Values of binned metrics for both benthic δ18O (top) and δ13C (bottom). Bins are of all data before the PETM, all data after 

the PETM, all data between the PETM and ETM2, and all data after ETM2. The indicators are AR(1) coefficient, detrended fluctuation 

analysis h-value (DFA-h), standard deviation (SD), skewness (SKEW), and kurtosis (KURT). Green shading indicates the indicator has 

increased relative to before the event (either the PETM or ETM2), red shading indicates a decrease in value. Each value is followed by a p-5 
value (in italics within parentheses preceded by a * if significant) computed using a permutation test, except for AR(1) for which we instead 

use AR(1) model-derived surrogate data to compare against (see Methods for details). 

Metric Before PETM After PETM (all) After PETM (to ETM2) After ETM2 

δ18O 

AR(1) 0.0611 0.659 *(0) 0.509 *(0) 0.657 *(0) 

DFA-h 0.035 0.140 *(0) 0.098 *(0) 0.187 *(0) 

SD 0.146 0.152 (0.279) 0.119 *(0.991) 0.145 *(0.002) 

SKEW -1.447 -0.635 *(0.098) -0.927 (0.281) -0.713 (0.211) 

KURT 14.621 4.905 *(1) 4.490 *(0.999) 3.884 (0.741) 

δ13C 

AR(1) 0.402 0.784 *(0) 0.500 *(0.001) 0.743 *(0) 

DFA-h 0.071 0.189 *(0) 0.088 (0.504) 0.203 *(0) 

SD 0.122 0.189 *(0) 0.105 *(0.999) 0.187 *(0) 

SKEW -0.541 -1.165 *(0.98) -0.700 (0.845) -1.056 (0.828) 

KURT 4.046 7.634 *(0.005) 4.073 (0.415) 4.728 (0.307) 
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